Properties of Logarithms

Since the exponential and logarithmic functions with base a are inverse functions, the Laws of Exponents give rise to the Laws of Logarithms.

Laws of Logarithms: Let a be a positive number, with $a \neq 1$. Let $A>0, B>0$, and C be any real numbers.

Law

1. $\log _{a}(A B)=\log _{a} A+\log _{a} B$
2. $\log _{\mathrm{a}}\left(\frac{A}{B}\right)=\log _{\mathrm{a}} A-\log _{\mathrm{a}} B$
3. $\log _{\mathrm{a}}\left(A^{C}\right)=C \log _{\mathrm{a}} A$

Description
The logarithm of a product of numbers is the sum of the logarithms of the numbers.

The logarithm of a quotient of numbers is the difference of the logarithms of the numbers.

The logarithm of a power of a number is the exponent times the logarithm of the number.

Example 1: Use the Laws of Logarithms to rewrite the expression in a form with no logarithm of a product, quotient, or power.
(a) $\log _{3}\left(\frac{5 x^{3}}{y^{2}}\right)$
(b) $\ln \sqrt[5]{x^{2}(z+1)}$

Solution (a):

$$
\begin{aligned}
\log _{3}\left(\frac{5 x^{3}}{y^{2}}\right) & =\log _{3}\left(5 x^{3}\right)-\log _{3} y^{2} & & \text { Law } 2 \\
& =\log _{3} 5+\log _{3} x^{3}-\log _{3} y^{2} & & \text { Law } 1 \\
& =\log _{3} 5+3 \log _{3} x-2 \log _{3} y & & \text { Law } 3
\end{aligned}
$$

Example 1 (Continued)

Solution (b):

$$
\begin{aligned}
\ln \sqrt[5]{x^{2}(z+1)} & =\ln \left(x^{2}(z+1)\right)^{\frac{1}{5}} & & \\
& =\frac{1}{5} \ln \left(x^{2}(z+1)\right) & & \text { Law } 3 \\
& =\frac{1}{5}\left[\ln x^{2}+\ln (z+1)\right] & & \text { Law } 1 \\
& =\frac{1}{5} \ln x^{2}+\frac{1}{5} \ln (z+1) & & \text { Distribution } \\
& =\frac{1}{5}(2 \ln x)+\frac{1}{5} \ln (z+1) & & \text { Law 3 } \\
& =\frac{2}{5} \ln x+\frac{1}{5} \ln (z+1) & & \text { Multiplication }
\end{aligned}
$$

Example 2: Rewrite the expression as a single logarithm.
(a) $3 \log _{4} 5+\log _{4} 10-\log _{4} 7$
(b) $\log x-2 \log y+\frac{1}{2} \log \left(9 z^{2}\right)$

Solution (a):

$$
\begin{aligned}
3 \log _{4} 5+\log _{4} 10-\log _{4} 7 & =\log _{4} 5^{3}+\log _{4} 10-\log _{4} 7 & & \text { Law } 3 \\
& =\log _{4} 125+\log _{4} 10-\log _{4} 7 & & \text { Because } 5^{3}=125 \\
& =\log _{4}(125 \cdot 10)-\log _{4} 7 & & \text { Law } 1 \\
& =\log _{4}(1250)-\log _{4} 7 & & \text { Simplification } \\
& =\log _{4}\left(\frac{1250}{7}\right) & & \text { Law 2 }
\end{aligned}
$$

Example 2 (Continued):

Solution (b):

$$
\begin{aligned}
\log x-2 \log y+\frac{1}{2} \log \left(9 z^{2}\right) & =\log x-\log y^{2}+\log \left(9 z^{2}\right)^{\frac{1}{2}} & & \text { Law 3 } \\
& =\log x-\log y^{2}+\log (3 z) & & \text { Simplification } \\
& =\log \left(\frac{x}{y^{2}}\right)+\log (3 z) & & \text { Law 2 } \\
& =\log \left[\left(\frac{x}{y^{2}}\right)(3 z)\right] & & \text { Law 1 } \\
& =\log \left(\frac{3 z x}{y^{2}}\right) & & \text { Simplification }
\end{aligned}
$$

Example 3: Evaluate the expression
(a) $\log _{2} \sqrt[5]{16}$
(b) $\log _{3} 189-\log _{3} 7$

Solution (a):

$$
\begin{aligned}
\log _{2} \sqrt[5]{16} & =\log _{2} 16^{\frac{1}{5}} \\
& =\frac{1}{5} \log _{2} 16 \\
& =\frac{1}{5} \log _{2} 2^{4} \\
& =\frac{1}{5}(4)
\end{aligned}
$$

$$
=\frac{4}{5}
$$

Law 3
Because $16=2^{4}$
Property 3 of Logarithms
(Section 6.2)
Multiplication

Solution (b):

$$
\begin{aligned}
\log _{3} 189-\log _{3} 7 & =\log _{3} \frac{189}{7} \\
& =\log _{3} 27 \\
& =\log _{3} 3^{3} \\
& =3
\end{aligned}
$$

Law 2
Simplification
Because $27=3^{3}$
Property 3 of Logarithms
(Section 6.2)

Change of Base:

A calculator can be used to approximate the values of common logarithms (base 10) or natural logarithms (base e). However, sometimes we need to use logarithms to other bases. The following rule is used to convert logarithms from one base to another.

Change of Base Formula:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Example 4: Use the Change of Base Formula and a calculator to evaluate the logarithm, correct to six decimal places. Use either natural or common logarithms.
(a) $\log _{6} 17$
(b) $\log _{5} 2.33$

Solution (a):

The Change of Base Formula says

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} .
$$

Thus, if we let the new base $a=10$

$$
\log _{6} 17=\frac{\log _{10} 17}{\log _{10} 6} \approx 1.581246
$$

Solution (b):

Again we will use the Change of Base Formula. This time we will let the new base be $a=e$.

$$
\log _{5} 2.33=\frac{\ln 2.33}{\ln 5} \approx 0.525568
$$

Example 5: Simplify: $\left(\log _{8} 12\right)\left(\log _{12} 7\right)$

Solution:

Using the Change of Base Formula with the new base $a=10$:

$$
\log _{8} 12=\frac{\log 12}{\log 8} \quad \text { and } \quad \log _{12} 7=\frac{\log 7}{\log 12}
$$

Thus,

$$
\begin{aligned}
\left(\log _{8} 12\right)\left(\log _{12} 7\right) & =\left(\frac{\log 12}{\log 8}\right)\left(\frac{\log 7}{\log 12}\right) & & \\
& =\frac{\log 7}{\log 8} & & \text { Simplification } \\
& =\log _{8} 7 & & \text { Change of Base Formula }
\end{aligned}
$$

